On the skeleton of a finite transformation semigroup

نویسندگان

  • Attila Egri-Nagy
  • Chrystopher L. Nehaniv
چکیده

There are many ways to construct hierarchical decompositions of transformation semigroups. The holonomy algorithm is especially suitable for computational implementations and it is used in our software package. The structure of the holonomy decomposition is determined by the action of the semigroup on certain subsets of the state set. Here we focus on this structure, the skeleton, and investigate some of its properties that are crucial for understanding and for efficient calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Derivations on Certain Semigroup Algebras

In the present paper we give a partially negative answer to a conjecture of Ghahramani, Runde and Willis. We also discuss the derivation problem for both foundation semigroup algebras and Clifford semigroup algebras. In particular, we prove that if S is a topological Clifford semigroup for which Es is finite, then H1(M(S),M(S))={0}.

متن کامل

INCLUSION RELATIONS CONCERNING WEAKLY ALMOST PERIODIC FUNCTIONS AND FUNCTIONS VANISHING AT INFINITY

We consider the space of weakly almost periodic functions on a transformation semigroup (S, X , ?) and show that if X is a locally compact noncompact uniform space, and ? is a separately continuous, separately proper, and equicontinuous action of S on X, then every continuous function on X, vanishing at infinity is weakly almost periodic. We also use a number of diverse examples to show ...

متن کامل

On certain semigroups of transformations that preserve double direction equivalence

Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).

متن کامل

Classification of Monogenic Ternary Semigroups

The aim of this paper is to classify all monogenic ternary semigroups, up to isomorphism. We divide them to two groups: finite and infinite. We show that every infinite monogenic ternary semigroup is isomorphic to the ternary semigroup O, the odd positive integers with ordinary addition. Then we prove that all finite monogenic ternary semigroups with the same index...

متن کامل

On the Finite Groupoid G(n)

In this paper we study the existence of commuting regular elements, verifying the notion left (right) commuting regular elements and its properties in the groupoid G(n). Also we show that G(n) contains commuting regular subsemigroup and give a necessary and sufficient condition for the groupoid G(n) to be commuting regular.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010